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Reducing scanning time is significantly important for MRI. Compressed sensing has shown promising
results by undersampling the k-space data to speed up imaging. Sparsity of an image plays an important
role in compressed sensing MRI to reduce the image artifacts. Recently, the method of patch-based
directional wavelets (PBDW) which trains geometric directions from undersampled data has been
proposed. It has better performance in preserving image edges than conventional sparsifying transforms.
However, obvious artifacts are presented in the smooth region when the data are highly undersampled. In
addition, the original PBDW-based method does not hold obvious improvement for radial and fully 2D
random sampling patterns. In this paper, the PBDW-based MRI reconstruction is improved from two
aspects: 1) An efficient non-convex minimization algorithm is modified to enhance image quality; 2)
PBDW are extended into shift-invariant discrete wavelet domain to enhance the ability of transform on
sparsifying piecewise smooth image features. Numerical simulation results on vivo magnetic resonance
images demonstrate that the proposed method outperforms the original PBDW in terms of removing
artifacts and preserving edges.
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1. Introduction

Magnetic resonance imaging (MRI) is extensively used to
visualize the anatomical or physiological structures of brain, heart,
breast and other parts of human bodies. However, slow imaging
speed in MRI may result in low spatial resolution in functional MRI
[1] or motion artifacts in abdominal MRI [2] and cardiac MRI [3]. The
k-space undersampling is oneway to accelerate the imaging speed at
the expense of introducing aliasing artifacts. Assuming that an image
is sparse in a sparsifying transform domain, compressed sensing MRI
(CS-MRI) [4] can remove these artifacts by randomly undersampling
k-space data and enforcing the reconstructed image to be sparse.
This technology has shown promising results in many MRI
applications, such as brain imaging [4–8], cardiac imaging [9–13],
parametric imaging [14] and catheter tracking [15]. In CS-MRI, the
sparsity is usually enforced by minimizing theℓ1 norm of transform
coefficients [4]. Besides, enforcing low rank structures of MR images
also successfully removes aliasing artifacts introduced by under-
sampling [10,11,13].

Sparsifying transform plays a key role in CS-MRI and sparser
representations result in better reconstructions. Conventional CS-
MRI usually use pre-constructed basis or dictionaries [4,16–19],
which may not sparsely represent images to be reconstructed.
Consequently, artifacts are presented in the reconstruction when k-
space data are highly undersampled [20–25]. In contrast, adaptive
transforms in CS-MRI will lead to lower reconstruction errors since a
sparser representation is learnt from the sampled data [20–22].

The patch-based directional wavelets (PBDW) [22] were recently
proposed in CS-MRI to better reconstruct edges than conventional
CS-MRI methods. PBDWprovide sparser representation of images by
estimating geometric directions from a reference image recon-
structed using conventional CS-MRI methods. However, artifacts
generated in the smooth regions of the reference image (Fig. 1(b))
lead to incorrect geometric directions (Fig. 1(e)) when k-space data
are highly undersampled. These artifacts are hard to remove for
PBDW asmarked in Fig. 1(c) since PBDW cannot sparsify the smooth
regions better than conventional sparsifying transform as evidenced
in the Section 3.4 of [22]. These artifacts may be viewed as
meaningful edges and possibly mislead the diagnosis.

To overcome this limitation of the method proposed in [22], we
take the advantage of multiscale decomposition on sparsely
representing piecewise smooth features [26]. When the reference
image is decomposed into coarse and fine subbands, artifacts in the
smooth region are obviously weakened in the coarse subbands
(Fig. 2(a)) and two of fine subbands (Figs. 2(b) and (c)). Artifacts in
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Fig. 1. Reconstructed images from highly undersampled data. (a) fully sampled image; (b) and (c) are reconstructed images using shift-invariant discrete wavelets and PBDW
with 30% of fully sampled data, respectively; (d) and (e) are estimated geometric directions from fully sampled image in (a) and reconstructed image in (b) using conventiona
CS-MRI methods; (f) reconstructed image by the proposed method.

ig. 2. Decomposed subbands in shift-invariant discrete wavelets domain when decomposition scale is 1. (a) a low frequency subband; (b)–(d) are three high frequency
ubbands. Note: The source image used in wavelet decomposition is Fig. 1(b), which is also the reference image that geometric directions are estimated from.
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Fig. 3. Sparsity of PBDW and the proposed PBDW in shift-invariant discrete wavelets (PBDWS) domain. (a) Approximation errors versus the percentage of preserved largest
coefficients; (b) and (c) are approximated images when 5% preserved largest coefficients are used. Note: Reference image in Fig. 1(b) is used to estimate geometric directions.
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the smooth region are mainly observed in a fine subband
representing vertical edges (Fig. 2(d)). Weakened pseudo edges
will help PBDW to estimate right geometric directions. In addition,
applying PBDW in the 2D wavelet subbands will achieve sparser
representation of 2D wavelet coefficients since re-transform large
magnitude coefficients according to geometric directions will obtain
many values close to zero [27,28]. As shown in Fig. 3, a faster decay of
approximation error is achived using the proposed method than the
original PBDW. When the 5% largest transform coefficients are
preserved, PBDW fail to represent the smooth region while
extending it into 2D wavelet domain will significantly improve the
representation. Therefore, applying PBDW in the 2Dwavelet domain
is expected to benefit PBDW removing the artifacts in smooth
regions of reconstructed images.

Non-convex optimization with ℓp 0≤pb1ð Þ norm minimization
has been proposed to preserve edges in MR image reconstruction
from highly undersampled data [29–33] and in image deconvolution
[34,35]. For the ℓ0 norm ‖α‖0 which counts the nonzero entries of
α∈RN , a weightedℓ1 norm ‖Λα‖1 (∈RN�N ) withweights Λi,i = |zi|−1

andΛi,j = 0(i ≠ j)mimickℓ0 normwhen |zi| → |αi| [36]. This implies
that ℓ0 norm ‖α‖0 could be viewed as penalizing small magnitude
entries of α while encouraging large magnitude entries in image
reconstruction. Therefore, minimizing ℓ0 norm minimization will
further suppress the artifacts in smooth regions, shown in Fig. 1(f),
which have been weakened in the wavelet domain.

With the reasons stated above, we propose to apply original
PBDW in 2D wavelet domain in CS-MRI in this paper. Hopefully,
more artifacts will be removed in the undersampled image
reconstruction. A shift-invariant discrete wavelet (SIDWT) based
onwavelet frame as shown in Fig. 2, is adopted as 2Dwavelets which
enable fast computation [37] and outperform orthogonal discrete
wavelets in reconstructing MR images [18,22,38–40]. The PBDW in
the SDIWT domain are denoted as PBDWS in this paper. For the
numerical algorithm solving non-convex optimization, a stable and
fast numerical algorithm called mean doubly augmented Lagrangian
(MDAL) [35], originally solving image deblurring problem, is
modified to fit the proposed PBDWS for better MRI reconstruction.
Fig. 4. Flowchart of patch-based directional wavelet in the SIDWT domain.
2. Methods

2.1. L0 norm minimization for image reconstruction in PBDWS domain

SIDWT is an undecimated wavelet transform since it avoids the
subsampling in orthogonal wavelets [26]. Each subband of SIDWT
has the same size of the original image. This property benefits
analyzing the edges [40]. In addition, redundancy in SIDWT further
improves the reconstruction quality [18,22,38–40]. Therefore,
SIDWT is adopted as 2D wavelets to sparsify the image in the
first step.

In the proposed method, PBDW are performed on each subband
of SIDWT as the second step. The flowchart of PBDWS is illustrated in
Fig. 4. The geometric direction wj for the jth patch in subbands of
SIDWT is obtained by minimizing S-term approximation error to
achieve the sparsity of coefficients [22,27,28] according to

wj;q ¼ arg min
θj;d∈θ

tc̃ j;d θj;d; S
� �

−ΨT
P θj;d
� �

RjΦ
T
xt2

2 ð1Þ

where αj is the operation dividing subbands of ΦTx into
patches. θ = {θ1, θ2, ⋯ θd ⋯, θD} is the set of candidate directions.
θj,d is the dth candidate direction in the jth patch. P(θj,d) is an
Fig. 5. Geometric directions trained in a SIDWT subband.
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Fig. 6. Two Cartesian sampling patterns. (a) 35% k-space data are sampled; (b) 45% k
space data are sampled.

Fig. 7. Fully sampled images used in simulation. (a)–(e) T2 w
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operation re-arranging pixels according to the direction θj,d. The
notation c̃j;d θj;d ; S

� �
denotes the S largest wavelet coefficients of

ΨTP(θj,d)RjΦTx. Estimated directions in one SIDWT subband are
shown in Fig. 5.

When the geometric directions of patches are available, 1D Haar
transform is performed on the SIDWT coefficients as follows:

z ¼

α1
⋮
αj

⋮
αJ

2
66664

3
77775 ¼

ΨT
P w1ð ÞR1

⋮
ΨT

P wj

� �
Rj

⋮
ΨT

P wJð ÞRJ

2
666664

3
777775Φ

T
x ¼ BWx ð2Þ

ΨTP w1ð ÞR1
⋮

2
6

3
7

where BW ¼ ΨTP wj

� �
Rj

⋮
ΨTP wJð ÞRJ

6664
7775ΦT .

In CS-MRI, the image is commonly reconstructed by minimizing
ℓ1 norm of transform coefficients. The ℓ0 norm minimization can
eighted brain images; (f) water phantom image; (g) cardiac image.
reconstruct the images with fewer measurements [29–31]. There-
fore, in the PBDWS-based image reconstruction we use minimizing
the ℓ0 norm of transform coefficients instead of ℓ1 norm
minimization as follows:

x̂ ¼ arg min
x

tBWxt0 þ
λ
2
ty−FUxt

2
2 ð3Þ

where FU ¼ UF∈CM�N denotes the undersampled Fourier trans-
form and y denotes the acquired k-space data. The terms ‖BWx‖0
and ‖y − FUx‖22 are used to enforce the sparsity of image x and
data consistency, respectively, while λ balances sparsity and
data consistency.

2.2. Numerical algorithm

The ℓ0 norm term in Eq. (3) is rewritten as follows:

‖BWx‖0¼‖

ΨT
P w1ð ÞR1

⋮
ΨT

P wj

� �
Rj

⋮
ΨT

P wJð ÞRJ

2
666664

3
777775Φ

T
x‖0¼‖

ΨT
P w1ð ÞR1Φ

T
x

⋮
ΨT

P wj

� �
RjΦ

T
x

⋮
ΨT

P wJð ÞRJΦ
T
x

2
666664

3
777775‖0¼‖

α1
⋮
αj

⋮
αJ

2
66664

3
77775‖0 ð4Þ

where αj satisfies

αj ¼ ΨT
P wj

� �
RjΦ

T
x: ð5Þ

Alternating direction minimization with augmented Lagrangian
method is shown to be fast in solving the ℓ1 norm minimization
problems for CS-MRI [41,42]. An improved algorithm of alternating
direction minimization, which is called mean doubly augmented
Lagrangian (MDAL) [35], is extended into solving the ℓ0 norm
minimization problem and shown to be stable. Numerical simula-
tions in [35] showed that the MDAL algorithm was superior to
penalty decomposition [43] in termsof both efficiency and the quality
of the restored image in deconvolution problems. In this paper,MDAL
was extended into the proposed PBDWS-based MRI reconstruction.
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Fig. 8. Reconstructed brain images when 35% k-space data are sampled. (a) the fully sampled image; (b) and (c) are reconstructed images using PBDW with l1 norm and l0 norm
minimization, respectively; (d) reconstructed image using total variation with homotopic l0 normminimization; (e) reconstructed images using PBDWSwith l0 normminimization.

1615B. Ning et al. / Magnetic Resonance Imaging 31 (2013) 1611–1622
The MDAL of Eq. (3) is defined as

L̃ x;α; ṽ; x̃;αð Þ ¼ min
x;α

λ
2
tFUx−yt2

2 þ tαt0 þ v;BWx−αh i
þ μ
2

tBWx−αt2
2 þ

γ
2
tx−x̃t2

2 þ
γ
2
tα−α̃t2

2 ð6Þ

where μ and γ are two constants, v is an intermediate variable in
iteration, x̃ and α̃ are the solution of x and α in last iteration,
respectively. Eq. (6) is solved via iteratively solving three sub-problems

x
kþ1 ¼ min

x

λ
2
‖FUx−y‖22 þ

μ
2

‖BWx−αþ v‖
2
2 þ

γ
2
‖x−x

k
‖
2
2

α ¼ min
α

‖α‖p þ
μ
2

‖BWx−αþ v‖
2
2 þ

γ
2
‖α−αk

‖
2
2

v
kþ1 ¼ v

k þ BWx
kþ1−αkþ1

� �:

8>>>>>><
>>>>>>:

ð7Þ

until the solution converges. Here,we only discuss how to solve thefirst
two sub-problems which are related to the proposed sparsifying
Fig. 9. SSIM metric corresponding to each central pixel. (e)–(g)
transform PBDWS in CS-MRI. The third sub-problem can be easily
solved [35, 43] and is summarized in Algorithm 1.

The first sub-problem in Eq. (7) is solved according to the
following normal equation

μ
XJ
j¼1

R
T
j P

T
wj

� �
ΨΨT

P wj

� �
Rj þ λFH

UFU þ γ

 !
x
kþ1

¼ μ
XJ
j¼1

R
T
j P

T
wj

� �
Ψ αj‐vj

� �
þ λFH

Uyþ γxk
:

ð8Þ

which is simplified as

x
kþ1 ¼ F

H
cIþ λUH

Uþ γI
� �−1

μFsα;v þ λUH
yþ γFxk

� �
: ð9Þ

where sα;v ¼
XJ
j¼1

R
T
j P

T
wj

� �
W αj‐vj

� �
.

are the SSIM corresponding to Figs. 8(b)–(e), respectively.
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Table 1
Reconstruction errors for Fig. 8(a).

Methods Images RLNE MSSIM

PBDW + l1 norm Fig. 8(b) 0.091 0.880
PBDW + l0 norm Fig. 8(c) 0.081 0.897
Total variation + l0 norm Fig. 8(e) 0.112 0.807
PBDWS + l0 norm Fig. 8(d) 0.069 0.970
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The second sub-problem in Eq. (7)

α ¼ min
α

tαt0 þ
μ
2

tBWx−αþ vt2
2 þ

γ
2
tα−αkt2

2: ð10Þ

is solved using hard thresholding

αkþ1 ¼ H μ ;γ BWx
kþ1 þ v

k
;αk

� �
: ð11Þ

where Hμ,γ is defined as

H μ;γ p; qð Þ
� �

i
¼

0; if
μpi þ γqi
μ þ γ

����
����b

ffiffiffiffiffiffiffiffiffiffiffiffi
2

μ þ γ

s
μpi þ γqi
μ þ γ

; otherwise
:

8>>><
>>>:

ð12Þ

The pseudo-code of the proposed method is summarized in
algorithm 1. It is worth noting that MDAL takes xk ¼ 1

kþ1∑k
j¼0x

j as
output to ensure the convergence of the algorithm [35].

Algorithm 1. Pseudocode for PBDWS-based CS-MRI reconstruction

Initialization:
Input acquired k-space data y, the geometric directions W =

{w1, ⋯ wj ⋯, wJ}J for all the patches in SIDWT subbands, overlapping factor c
and the fast operator FU, the Haar wavelet Ψ, the SIDWT Φ, regularization
parameter λ, and default parameters γ = 1, μ = 104 and tolerance of inner
loop η = 5 × 10−3. The reconstructed image is initialized as x = FUHy and
other variables are initialized asv0 ¼ 0;x0 ¼ 0;α0 ¼ 0.

Main:
While xkþ1−xk≤ is not satisfied, do

(1) update x: xk+1 = FH(μcI+ λUHU + γI)−1(μFsα,v + λUHy+ γFxk);
(2) update α: αk + 1 = Hμ,γ(BWxk + 1 + vk, αk);
(3) update v:vk + 1 = vk + (BWxk + 1 − αk + 1);
(4) update xkþ1 ¼ kþ1

kþ2x
k þ 1

kþ2x
kþ1;

End
Output: x
Table 2
Reconstruction errors for Figs. 7(b)–(e).

Methods Images

Fig. 7(b) Fig. 7(c)

RLNE MSSIM RLNE

PBDW + l1 norm 0.104 0.920 0.104
PBDW + l0 norm 0.096 0.927 0.094
Total variation + l0 norm 0.130 0.909 0.136
PBDWS + l0 norm 0.089 0.944 0.089
3. Simulation results

3.1. Simulation setup

3.1.1. Evaluation criteria
The relative ℓ2 norm error (RLNE), structural similarity (SSIM)

index [44], and signal-to-noise ratio (SNR) [22] are adopted to
evaluate the quality of reconstructed image. The expression of
RNLE is

RLNE x̂ð Þ ¼ tx̂−x̃t2

tx̃t2
ð13Þ

It is applied to measure the difference between the fully sampled
image x̃ and the reconstructed image x̂. Lower RLNE indicates the
smaller difference between the reconstructed image and the fully
sampled image.

SSIM [44] evaluates local reconstruction errors by measuring
the similarity between two images in a local window. This
criterion has been widely used to measure the image quality
when a reference image is available. In our case, the reference
image is the fully sampled image. Definition of SSIM is as follows:
For two local windows a and b, whose size is G × G, the SSIM
between them is

SSIM a;bð Þ¼ 2μaμb þ C1ð Þ 2σab þ C2ð Þ
μa

2 þ μb
2 þ C1

� �
σa

2 þ σb
2 þ C2

� � ð14Þ

where μa is the average of a, μb is the average of b,σa
2 is the variance

of a,σb
2 is the variance of b, σab is the covariance of a and b, C1 and C2

are two variables to stabilize the division with weak denominator.
Higher SSIMmeans the two windows are more similar to each other.
Therefore, SSIM criteria corresponding to each central pixel are a
useful way to display the local reconstruction errors.

Displaying the SSIM for many images is not convenient. A mean
SSIM (MSSIM) of the entire image is a common evaluation of overall
image quality [44]. MSSIM is defined as

MSSIM A;Bð Þ¼ 1
R

X1
i¼1

SSIM ai;bið Þ: ð15Þ

where A and B are the fully sampled and reconstructed images,
respectively; ai and bi are the image contents at the ith local window,
and R is the number of total local windows. In our implementation, R
equals to the number of pixels of an imagemeaning that each pixel is
the center of a local window. Higher MSSIM values indicate stronger
detail preservation in reconstruction.

3.1.2. Datasets and sampling patterns
In simulation, variable Cartesian sampling patterns in Fig. 6 are

adopted to undersample the k-space data. Images used in simulation
include T2 weighted brain images (Figs. 7(a)–(e)), a water phantom
image (Fig. 7(f)) and a cardiac image (Fig. 7(g)). The brain images (size
Fig. 7(d) Fig. 7(e)

MSSIM RLNE MSSIM RLNE MSSIM

0.921 0.095 0.920 0.052 0.732
0.931 0.082 0.935 0.051 0.741
0.890 0.112 0.911 0.059 0.710
0.940 0.075 0.949 0.038 0.910



Fig. 10. Reconstructed water phantom images when 35% k-space data are sampled. (a) the fully sampled image; (b) and (c) are reconstructed images using PBDW with l1
norm and l0 norm minimization, respectively; (d) reconstructed image using total variation with homotopic l0 norm minimization;(e) reconstructed images using PBDWS
with l0 norm minimization.
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256 × 256) shown in Figs. 7(a)–(e) are acquired from a healthy
volunteer at a 3 T SiemensTrio TimMRI scannerusing theT2-weighted
turbo spin echo sequence (TR/TE = 6100/99 ms, 220 × 220 mm field
of view, 3 mm slice thickness). The water phantom image (size
Fig. 11. Reconstructed cardiac images when 45% k-space data are sampled. (a) the fully sa
norm minimization, respectively; (d) reconstructed image using total variation with hom
minimization; (f)–(j) are the difference images between fully sampled MR image and (a)
256 × 256) shown in Fig. 7(f) is acquired at 7 T Varian MRI system
(Varian, Palo Alto, CA, USA) with the spin echo sequence (TR/TE =
2000/100 ms, 80 × 80 mm field of view, 2 mm slice thickness). The
cardiac image in Fig. 7(g) is downloaded from [45].
mpled image; (b) and (c) are reconstructed images using PBDW with l1 norm and l0
otopic l0 norm minimization; (e) reconstructed images using PBDWS with l0 norm

–(e) .
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Table 3
Reconstruction errors for Figs. 10 and 11.

Methods Images

Fig. 10 Fig. 11

RLNE MSSIM RLNE MSSIM

PBDW + l1 norm 0.052 0.732 0.091 0.841
PBDW + l0 norm 0.051 0.741 0.094 0.842
Total variation + l0 norm 0.059 0.710 0.093 0.837
PBDWS + l0 norm 0.038 0.910 0.082 0.920

ig. 12. Reconstruction errors under different sampling patterns. (a)–(c) are Cartesia
ndersampling patterns in (a)–(c), respectively.
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3.2. Simulations on in vivo and phantom images

To demonstrate the performance of the proposed method,
PBDWS with ℓ0 norm minimization is compared with original
PBDW with ℓ1 norm minimization [22] and total variation with
homotopic ℓ0 norm minimization [30]. To estimate the geometric
directions [22], we use SIDWT-based reconstructed image as a guide
image. Regularization parameter λ for PBDW and PBDWS is set as
106. The regularization parameter is 105 for homotopic ℓ0 norm
minimization. All simulations are performed on an Intel Core 2 Duo
CPU at 3.0 GHz and 2 GB memory.

Reconstructed brain images using 35% of k-space data of
Fig. 7(a) is shown in Fig. 8. With ℓ1 norm minimization, the
original PBDW fails to remove the artifacts shown in Fig. 8(b). When
we use ℓ0 norm minimization, these artifacts are slightly better
suppressed as shown in Fig. 8(c). Total variation with homotopicℓ0

norm minimization method successfully suppressed the artifacts
n, radial and 2D undersampling patterns; (d)–(f) are reconstruction errors corresponding to
F
u

but introduced stair-case artifacts as shown in Fig. 8(d). Combing
PBDWS with ℓ0 norm minimization, the proposed method
significantly suppresses the artifacts and preserves the edges in
Fig. 8(e).

SSIM criteria, measuring the local reconstruction errors and
corresponding to each central pixel, are evaluated in Fig. 9. It shows
that higher SSIM is achieved in most image regions using the
proposed method than other methods. This implies that the
reconstructed image using the proposed method is more consistent
to the fully sampled image.

Besides the visual inspection and local reconstruction errors
evaluation, global reconstruction errors, RLNEs and MSSIMs are
measured in Table 1, showing that the proposed PBDWS achieves the
lowest RLNEs and highest MSSIMs among all the comparedmethods.
This observation is consistent to criteria comparison in Table 2,
which is evaluated on reconstruction of other four T2-weighted
brain images when 35% of k-space data are sampled.

We also verify the performance of different methods using water
phantom and cardiac images. The sampling patterns shown in
Figs. 6(a) and (b) are used for water phantom and cardiac images,
respectively. For the phantom data, the proposed method achieves
the best resolution among all the methods as shown in Fig. 10. For
the cardiac image shown in Fig. 11, most image features are obtained
by the proposed method. The lowest reconstruction errors RLNEs
and highest MSSIMs are achieved by the proposed method for the
two datasets as shown in Table 3.

In summary, visual inspections in Figs. 8, 10, and 11 and
reconstruction errors in Tables 1–3 demonstrate that PBDWS with
ℓ0 norm minimization outperforms other methods.

image of Fig.�12


Fig. 13. Comparison on reconstructed images for noise-added data. (a) and (b) are fully sampled image without and with added noise, respectively; (c) reconstructed image using
PBDW with l1 norm minimization; (d) reconstructed image using total variation with homotopic l0 norm minimization; (e) reconstructed images using PBDWS with l0 norm
minimization.
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4. Discussion

4.1. Different undersampling patterns

Reconstruction errors for different undersampling patterns are
evaluated in Fig. 12. When the sampling rate is larger than 0.25 for
radial sampling as shown in Fig. 12(e) and sampling rate is larger
than 0.30 for the fully 2D random sampling as shown in Fig. 12(f),
the PBDW cannot maintain the improvement over conventional
CS-MRI methods, which is also observed in [25]. But the proposed
method overcomes this limitation successfully. Consistent im-
provement using the proposed method over traditional CS-MRI
methods is observed in Fig. 12 when the RLNE is larger than 0.05.
These observations imply that the proposed method is robust to
sampling patterns.

4.2. Handling noise-added data

To demonstrate the performance with additive noise using the
proposed method, a Gaussian white noise with variance σ2 = 0.20
was added into real and imaginary parts of original k-space data,
respectively. We employed Cartesian sampling shown in Fig. 6(b) to
Table 4
Reconstruction errors for noise-added data.

Methods Images RLNE MSSIM SNR

Noise added image Fig. 13(b) 0.095 0.800 10.9
PBDW + l1 norm Fig. 13(c) 0.113 0.882 30.6
Total variation + l0 norm Fig. 13(d) 0.124 0.871 25.5
PBDWS + l0 norm Fig. 13(e) 0.087 0.960 35.3

Fig. 14. Reconstruction errors versus decomposition scale of SIDWT.
acquire 45% of the full data. In simulation, while maintaining
SNR ≥ 15 in the reconstructed images, the choice of regularization
parameters for different methods is optimized to suppress most of
the noise as well as achieve the lowest RLNEs.

The regularization parameter λ is set as 5 × 103 for PBDW with
ℓ1 norm minimization, λ = 9 × 102 for the proposed PBDWS with
ℓ0 normminimization, and the regularization parameter is 10−1 for
homotopic ℓ0 norm minimization. For the noise-added image in
Fig. 13(b), better noise suppressing and sharper textures or edges are
achieved using the proposed method (Fig. 13(e)) than using other
methods (Figs. 13(c) and (d)). The proposed method obtained the
lowest RLNEs and highest SNRs as shown in Table 4. These results
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Fig. 15. Computation time and reconstruction errors versus overlap factor.

ig. 16. Empirical convergence of the MDAL algorithm. (a) The decay curve of inc
bjective function versus computation time.

Table 5
Computation time of different reconstruction methods (unit: seconds).

Methods Images

Fig. 7(b) Fig. 7(c) Fig. 7(d) Fig. 7(e)

PBDW + l1 norm 351 397 371 373
PBDWS + l0 norm 358 390 393 337
Total variation + l0 norm 379 385 373 382

Note: All the methods are carried out until their RLNEs stabilize. The CPU time is
averaged by repeating the same simulation 5 times.
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demonstrate that the proposedmethod has advantages in preserving
the textures or edges for the data with noise.

4.3. Decomposition scales

The optimal decomposition scales of SIDWT are tested. Fig. 14
shows that the reconstruction error increases as the number of
decomposition scales grows. The lowest reconstruction error is
obtained when decomposition scale is 1. The reason may be that one
scale SIDWT filters out the aliasing artifacts introduced by under-
sampling. However, further increasing the scales results in smoother
edges that does not help finding the geometric direction and
improving the sparsity in PBDW.

4.4. Overlap factor

Overlap factor is chosen as 4 to tradeoff between computation
and reconstruction error. Theoretically, the computational complex-
ity of one forward/inverse PBDWS is proportional to the overlap
factor c. Computation time is tested under different overlap factors.
As shown in Fig. 15, RLNEs decrease as overlap factor grows. When
overlap factor is larger than 4, RLNE decreases slowly. Reduction of
RLNE is at the cost of longer computation time. This suggests that
overlap factor 4 is optimal in our simulation.

4.5. Convergence of the algorithm

The convergence of the proposed method is empirically tested.
Fig. 16(a) is used for the experiment. The reference [35] suggests to
test the convergence of MDAL by plotting the evolution of ‖x

k−xk−1
‖2

‖z‖2
where xk and xk−1 are reconstructed image, and z is the zero
rements of reconstructed images in iterations; (b) reconstruction errors in iterations; (c)
F
o

filling undersampled magnetic resonance image. The cure in
Fig. 16(a) shows that ‖xk−xk−1

‖2
‖z‖2

decreases with iterations. As the
iterations increased, the solution progressively approaches the
fully sampled as shown in Fig. 16(b). The objective function
decreases and gradually stabilizes when the computation time
increases as shown in Fig. 16(c). These observations indicate that
MDAL convergences in the proposed method.

4.6. Computation time

Once geometric directions were estimated from a guide image,
the computational complexity of PBDW is O(cN), which is
proportional to the overlap factor c of PBDW and the number of
pixels N in one image [22]. The computational complexity of
PBDWS is O(c′M) where c′ is the overlap factor of PBDWS and M is
the number of wavelet coefficients in all SIDWT subbands. In
typical setting of the proposed method, c′ ¼ 1

4 c and M = 4N.
Therefore, the PBDWS has the same computational complexity of
PBDW with typical overlap factor 16 [22]. The computation time of
these methods is summarized in Table 5, which shows that the
proposed method can reach lower RLNEs with nearly the same
time of PBDW and this time is about 4 times that of conventional
SIDWT-based reconstruction.

4.7. Regularization parameters

How to choose the regularization parameters is discussed in this
section. Following the principle of maximum likelihood estimation
(MLE) [42], regularization parameter λ should be proportional to the
inverse of noise variance σ2. If the data are free of noise, λ should be
as large as possible. In our cases, λ = 106 is large enough to achieve
the optimal reconstruction for all the used imaging data without
additive noise.

For the noise-added data, regularization parameter λ is crucial to
minimize reconstruction errors and maintaining SNRs. From the
aspect of MLE [42], a smaller λ penalizes the noise more heavily. The
effect of λ values on reconstruction is studied in Fig. 17. It shows that
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Fig. 17. Effect of regularization parameter λ for reconstruction of brain image with added noise using the proposed method. (a) The RLNEs and SNRs against the regularization
parameter λ when 45% k-space data are sampled; (b)–(c) are reconstructed images with λ = 200,900,5000. respectively.
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a small λ (5 × 102) results in over-smoothed image while a large λ
(λ N 5 × 103) will introduce residual noise in image. Among the
values we tested in this experiment, λ between [5 × 102, 5 × 103]
appears to be optimal as suggested with nicely low reconstruction
errors and high SNRs.

5. Conclusions

In this work, performance of PBDW-based undersampled
magnetic resonance image reconstruction is improved by minimiz-
ing the ℓ0 norm of transform coefficients and extending PBDW into
2D shift-invariant discrete wavelets domain. Image edges are better
preserved and the artifacts are better removed than the original
PBDW with ℓ1 norm minimization. The proposed method is
observed to be robust to sampling patterns. A mean doubly
augmented Lagrangian algorithm makes the solution progressively
approach the fully sampled image in iterations. Our future work is
combing the proposed method with spread spectrum MRI [46,47],
which may reduce the coherence between sampling matrix and
sparsifying transform leading to potential reduction of reconstruc-
tion errors. In addition, applying other adaptive sparsifying trans-
forms [48,49] and combining them with PBDWS in MR image
reconstruction are worth investigating.
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