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Abstract

Undersampling k-space is an effective way to decrease acquisition time for MRI. However, aliasing artifacts introduced by undersampling
may blur the edges of magnetic resonance images, which often contain important information for clinical diagnosis. Moreover, k-space data
is often contaminated by the noise signals of unknown intensity. To better preserve the edge features while suppressing the aliasing artifacts
and noises, we present a new wavelet-based algorithm for undersampled MRI reconstruction. The algorithm solves the image reconstruction
as a standard optimization problem including a ℓ2 data fidelity term and ℓ1 sparsity regularization term. Rather than manually setting the
regularization parameter for the ℓ1 term, which is directly related to the threshold, an automatic estimated threshold adaptive to noise
intensity is introduced in our proposed algorithm. In addition, a prior matrix based on edge correlation in wavelet domain is incorporated into
the regularization term. Compared with nonlinear conjugate gradient descent algorithm, iterative shrinkage/thresholding algorithm, fast
iterative soft-thresholding algorithm and the iterative thresholding algorithm using exponentially decreasing threshold, the proposed
algorithm yields reconstructions with better edge recovery and noise suppression.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

MRI, a widely used analytical tool for medical diagnosis,
is burdened by slow data acquisition. An effective way to
speed up MRI is to undersample k-space. However, under-
sampling violates the Nyquist–Shannon sampling theorem,
resulting in aliasing artifacts in reconstructed magnetic
resonance (MR) images. In addition, k-space is often
contaminated by signals due to the coils and eddy currents
in the patient [1]. Both the artifacts and the noise signals will
affect the clarity of the MR image edges, which usually
contain significant information for pathological diagnosis.
For instance, the edges and textures in brain images are
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useful for diagnosis and research of schizophrenia and
Alzheimer's disease [2]. The degree of liver fibrosis, which
can be measured by MR image texture analysis, is a useful
predictive factor for the occurrence of hepatocellular
carcinoma [3]. The tumor margin, caliber of vessel and the
vessel border are suggestive of extramural vascular invasion,
which is a pathologic feature predictive of distant relapse and
poor survival among patients with colorectal cancer [4].
Therefore, undersampled MRI reconstruction with good
edge recovery is important for some clinical applications,
such as the applications mentioned above.

Compressed sensing (CS) proposed by Candès et al. [5]
and Donoho [6] is a new sampling and compression theory.
CS reconstructs the N×1 signal x from far fewer M(M≪N)
measurements y (y=Φx, Φ is an M×N measurement matrix)
than Nyquist sampling rule by exploiting the sparsity of
signal x in a certain transform domain.

Undersampled MRI reconstruction is a special case of CS
where the measurements are Fourier coefficients (k-space
samples) for the Fourier encoding scheme. If the MR image
vector x can be sparsely represented by a transform Ψ with
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coefficient vector w (x=Ψw), then x can be accurately
reconstructed from a small subset of k-space data by solving
the ℓ0 norm minimization problem

min
w

‖w‖0; s:t: y = FuΨw; ð1Þ

where Fu=UF, and U is an M×N undersampling matrix and
F∈ℂN×N represents the forward Fourier transform.

Unfortunately, the ℓ0 norm is not convex and the
computational complexity of the optimization is nonpoly-
nomial hard [7]. To overcome this difficulty, one option is to
optimize with the ℓ1, ℓp (0bpb1) [8,9] or smoothed ℓ0

norm [10–12] instead. However, the ℓp (0bpb1) and
smoothed ℓ0 norm minimization could sink into local
minima, and ℓ1 norm minimization requires more measure-
ments for exact reconstruction [5,6]. The detailed discussion
is beyond the scope of this work. In this article, we utilize the
widely used ℓ1 norm minimization to enforce the sparsity of
solutions by replacing the ℓ0 norm

min
w

‖w‖1; s:t: y¼FuΨw: ð2Þ

As measured k-space data y is often contaminated by
noise, the data consistency in Eq. (2) is violated. The
reconstruction is then obtained by solving

min
w

‖w‖1; s:t: ‖y−FuΨw‖2be; ð3Þ

where ɛ is the error tolerance and controls the reconstruction
fidelity [13].

The constrained optimization problem in Eq. (3) can be
written in the Lagrangian form

min
w

1
2
‖y − FuΨw‖22 + k‖w‖1; ð4Þ

where λ is a regularization parameter governing the tradeoff
between the reconstruction error and its sparsity.

A successful application of CS requires the sparsity of the
desired MR image. Most MR images do show sparsity in
certain transform domains. Angiograms, for instance, are
structurally simple and sparse in identity transform domain
[13]. More complicated MR images can be sparsified by total
variation [14]; wavelet (WT) [13]; contourlet [15,16] or
some more complicated transform, such as combined
sparsifying transforms [17]; and dictionary with more than
one basis function [18].

Image edges exhibit high spatial correlation in the WT
domain, both within and across scales, and therefore can be
located very effectively [19]. According to CS MRI
requirements in Ref. [13], aliasing artifacts introduced by
ideal sampling patterns for k-space undersampling should be
incoherent (noise like rather than edge feature-like) in the
sparsifying transform domain. If sampling patterns meet this
requirement, the correlation can be used as a helpful tool to
discriminate edges from aliasing artifacts. Thus, good
reconstruction of edges and suppression of aliasing artifacts
can be expected.
In this article, we present a WT-based edge correlation
incorporated algorithm (ECIA) for undersampled MRI
reconstruction. A prior matrix, which incorporates the
inter- and intrascale edge correlation in WT domain into
Eq. (4), is designed to modulate the wavelet coefficients.
ECIA modifies the iterative thresholding algorithm using
exponentially decreasing threshold (IT-EDT) [15] to make
use of the prior matrix. In addition, as the k-space data is
often contaminated by noise of unknown intensity, it is
sometimes difficult to set the appropriate value of the
regularization parameter λ in Eq. (4). In ECIA, the value of
the regularization parameter is automatically assigned
according to an estimated lowest threshold, which is
calculated according to the noise intensity.

This article is organized as follows. In Section 2, we first
give an introduction to the undecimated WT and IT-EDT
algorithm. Then the proposed algorithm is presented,
including the calculation of the estimated lowest threshold
and the prior matrix design. In Section 3, we use the ECIA
for undersampled MRI reconstructions. The performance of
ECIA is compared with nonlinear conjugate gradient descent
algorithm (NLCG) [13], iterative shrinkage/thresholding
algorithm (IST) [20,21], fast iterative soft-thresholding
algorithm (FISTA) [22] and IT-EDT [15]. The effect of
estimated lowest threshold on noise suppression, the
reconstruction time and the empirical convergence of the
algorithm are also reported. The discussion and conclusions
part are given in Section 4.
2. WT-based ECIA algorithm for MRI reconstruction

2.1. Undecimated WT

Traditional orthogonal WT reduces resolution by one-
half at each level via subsampling data. It is not easy to
follow the evolution of edges through scales using
orthogonal WT. In addition, as the orthogonal WT produces
fewer coefficients at coarse scale, edges within coarser
scales are difficult to track.

An alternative referred to as undecimated WT has been
developed. Undecimated WT eliminates the decimation step
in the orthogonal WT transform. It is redundant and has the
same number of coefficients at all scales, which allows edge
analysis pixel by pixel. This property is convenient for
investigation of the edge correlation in inter- and intrascales.
What is more, the redundancy of the sparsifying transform
has the potential benefit to improve the reconstruction
quality [15]. Thus à trous WT [23], a computationally
efficient and widely used undecimated WT, is employed to
sparsify the MR image in this work.

2.2. WT-based IT-EDT for CS MRI

The classic interpretations of iterative thresholding (IT)
for solving ℓ1 norm minimization were reported previously
[21]. For theoretical analysis, Herrity et al. [24] employed
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hard IT to demonstrate that one could recover the k-term
representation of the original signal up to any prescribed
error tolerance under certain conditions. Bredies and Lorenz
[25] proved that soft IT converged with a linear rate once the
underlying operator satisfied the finite basis infectivity
property or the minimizer possessed a strict sparsity pattern.
Inspired by these works, Qu et al. [15] applied IT-EDT,
which was originally used for NMR spectra reconstruction
[26], to solve Eq. (4). In addition to the IT-EDT, there are
also some other soft-thresholding algorithms, such as IST
[20,21] and FISTA [22]. IST and FISTA seek the solution to
Eq. (4) by applying the iteration step

wt + 1 = Sht wt +
1
c

FuΨð ÞHr
� �

; ð5Þ

where r is the residual in k-space, cN║(FuΨ)HFuΨ║2, θt= k
c .

As our proposed algorithm is modified on the basis of IT-
EDT, we will give the pseudo-code of IT-EDT, which is
implemented by the following steps.

Algorithm IT-EDT

(1) Initialize the relative error tolerance Re, t=0,
maximal iteration times tmax, w0=[0,0,L,0]

T, r=y,
ρ(0bρb1), θ0=max((FuΨ)Hr0);

(2) While ║y−FuΨwt║2/║y║2NRe and tbtmax

(3) wt+1=wt+Sθt((FuΨ)Hr);
(4) r=y−FuΨwt+1;
(5) θt+1=ρθt;
(6) t=t+1;
(7) End While.

In Line (3), Sθt(·) is a soft-thresholding operator with θt as
the threshold, (FuΨ)H is the adjoint operator of FuΨ.

We find that IT-EDT employs a threshold θt decreasing
exponentially with the iteration count, which is somewhat
similar to the continuation strategy adopted in the methods
of gradient projection for sparse reconstruction [27], fixed-
point continuation [28] and sparse reconstruction by
separable approximation with continuation [29]. Instead of
solving Eq. (4) directly with λ, the continuation strategy
obtains the final solution using a decreasing sequence
{λ1,λ2,…λt,λt+1,…} (λ1bλ2b…bλt,λt+1b…) as the regulariza-
tion parameter. It was proved that continuation strategy
yielded a fast convergence [28,29]. In IT-EDT, however,
when the threshold decreases from θt to θt+1, one iteration
in IT-EDT may not obtain an optimal solution to the current
problem in the problem sequence. Inspired by the works in
Refs. [28] and [29], we embed IST as an inner loop in IT-
EDT. In each IST inner loop, as the threshold is determined
by θt=

kt
c , {λ1,λ2,…λt,λt+1,…} is therefore equivalent to a

threshold incorporated sequence {cθ1,cθ2,…cθt,cθt+1,…}. The
modified IT-EDT is referred to as IT-EDT with continuation
(IT-EDTC) and is given by the following pseudo-code.
Algorithm IT-EDTC

(1) Initialize the relative error tolerance Re; maximal
outer-loop and inner-loop iteration times tmaxout,
tmaxin; inner-loop iteration count t=1; outer-loop
iteration count tout=1; w1=[0,0,…,0]T; r=y;
ρ(0bρb1); θ1=max((FuΨ)Hr);

(2) Outer-loop: While ║y−FuΨwt║2/║y║2NRe and
toutbtmaxout

(3) Inner-loop: While tbtmaxin

(4) wt + 1 = Shtout wt + 1
c FuΨð ÞHr

� �
;

(5) r=y−FuΨwt+1;
(6) t=t+1;
(7) End While (inner-loop ends);
(8) w1=wt;
(9) t=1;

(10) θtout+1=ρθtout;
(11) tout=tout+1;
(12) End While (outer-loop ends).

2.3. The proposed algorithm

For the traditional CS-MRI algorithms using soft-thresh-
olding to solve Eq. (4) with noisy measurements, such as IST
and FISTA, the regularization parameter λ needs to be set
(usually manually) in advance. Some algorithms, such as the
L-curve [30], can be used to set this parameter, but need to
solve the problem several times and then it is possible to find
a good regularization parameter. The proposed ECIA
presents one way to stop the iteration by estimating a lowest
threshold θlow based on the noise estimation in the WT
subbands, and the algorithm stops when the threshold
reaches θlow. Similar to IT-EDTC, ECIA also uses IST as the
inner loop; therefore the regularization parameter λ=cθlow is
automatically obtained according to θlow.

In addition, to obtain better edge recovery, ECIA uses
the following model by plugging a correlation matrix B into
Eq. (4),

min
w

1
2
‖y − FuΨw‖22 + k‖Bw‖1; ð6Þ

where B is a binary diagonal matrix containing the inter-
and intrascale correlation of edges in the WT domain.
Below we will explain the estimation of lowest threshold
and the design of correlation matrix B in detail.

2.3.1. Estimation of lowest threshold
In the recent years, plenty of research studies have

addressed the development of statistical models for image
denoising. An accurate statistical model, designed directly
on images or their transform coefficients, is critical for the
denoising results. Sendur and Selesnick [31] proposed a
WT-based bivariate shrinkage algorithm with local variance
estimation for image denoising. The algorithm models the
statistical dependency of the wavelet coefficients and
defines a nonlinear thresholding function (shrinkage
function) using Bayesian estimation theory. Inspired by
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this work, we derive the estimated lowest threshold θlow
from the shrinkage function.

According to the algorithm in Ref. [31], supposeWs
k(m,n)

is a noise-corrupted WT coefficient in the kth subband at
scale s with the spatial location (m,n), [υ(m,n)]2 is the
marginal variance of coefficient Ws

k(m,n) in a local
neighborhood, σ2=median(|Ws|)/0.6745 is the noise variance
estimated from the wavelet coefficients, then the estimation
from Ws

k(m,n) is calculated by the following bivariate
shrinkage function

Ŵ
k

s m; nð Þ =
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wk

s m; nð Þ2 + Wk
s + 1 m; nð Þ2

q
−

ffiffi
3

p
r2

υ m;nð Þ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wk

s m; nð Þ2 + Wk
s + 1 m; nð Þ2

q

�Wk
s m; nð Þ; ð7Þ

where function f(·) is defined as

f xð Þ = 0; if xb0
x; otherwise

�
ð8Þ

Empirically, we find that for most WT coefficients,
|Ws+1

k (m,n)/Ws
k(m,n)| varies within a small range, as

shown in Fig. 1B, and therefore can be approximately
viewed as a constant τ=|Ws+1

k (m,n)/Ws
k(m,n)|. After the

following manipulations, Eq. (7) can be rewritten as a
soft-thresholding function

Ŵ
k

s m; nð Þ

=
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wk

s m; nð Þ2 + Wk
s + 1 m; nð Þ2

q
−

ffiffi
3

p
r2

υ m;nð Þ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wk

s m; nð Þ2 + Wk
s + 1 m; nð Þ2

q �Wk
s m; nð Þ

=
f

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + s2

p
jWk

s m; nð Þ j −
ffiffi
3

p
r2

υ m;nð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + s2

p
jWk

s m; nð Þ j �Wk
s m; nð Þ

= f 0; if −
ffiffiffi
3

p
r2

υ m; nð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + s2

p VWk
s m; nð ÞV

ffiffiffi
3

p
r2

υ m; nð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + s2

p

Wk
s m; nð Þ −

ffiffiffi
3

p
r2

υ m; nð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + s2

p � Wk
s m; nð Þ

jWk
s m; nð Þ j ; otherwise

= S ffiffi
3

p
r2 = υ m;nð Þ

ffiffiffiffiffiffiffiffiffiffi
1 + s2

pð Þ Wk
s m; nð Þ� 	

ð9Þ
where with

ffiffiffi
3

p
r2= υ m; nð Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + s2

p� �
as the threshold,

therefore the lowest threshold θlow is then estimated with

hlow = min
ffiffiffi
3

p
r2= υ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + s2

p� �� �
ð10Þ

2.3.2. Correlation matrix design
The design of matrix B implies the following beliefs. (a)

The edge features usually have signal peaks across different
WT scales. (b) Within each WT scale, the coefficients
corresponding to edge features tend to cluster together and
show a spatial continuity [19]. The former and the latter
reflect the inter- and intrascale dependencies of edge
features, respectively. If we can discriminate edges from
non-edge WT coefficients in matrix B using the inter- and
intrascale dependencies, reconstructions with better edge
recoveries can be expected.

Correlation matrix B is designed in the context of
IT-EDTC algorithm, as shown in Fig. 2. Suppose Ws,t+1

k is
WT coefficients obtained from the soft-thresholding (see
Line (4) of IT-EDTC pseudo-code), with k and s being the
subband and scale index. If we regard the WT coefficients
with amplitude larger than the threshold as the signal peaks
of edges, then these peaks can be labeled out using the
nonzero entries in Ws,t+1

k . In Fig. 2, let the white squares in
Ws,t+1

k denote the zero entries and the black squares the
nonzero entries. The signal peak is therefore labeled in
binary matrix Ls

k by

Lk
s m; nð Þ = 1; if Wk

s;t + 1 m; nð Þ p 0
0; otherwise

�
ð11Þ

As the interscale edge dependency usually involves the
two adjacent WT scales [19], we therefore build a binary
interscale correlation matrix Bs,inter

k , labeling the edges by

Bk
s; inter m; nð Þ = 1; if Lk

s m; nð Þ = 1 andLk
s + 1 m; nð Þ = 1

0; otherwise

�

ð12Þ

As for the intrascale dependency, we use the number of
entries in each eight-connected nonzero regions of Ws,t+1

k to
measure the spatial continuity of the edges. The eight-
connected nonzero region is a group of nonzero entries in
which each member can touch at least one member at its
adjacent vertical, horizontal or diagonal positions. The more
entries the eight-connected nonzero regions contain, the
better they exhibit spatial continuity. For instance, in Ls

k of
Fig. 2, there are three eight-connected regions with one, two
and nine nonzero entries, respectively, as labeled in matrix
Es
k. To select the regions with better spatial continuity, we

design a guiding map Bs,intra
k by

Bk
s; intra m; nð Þ = 1; if Ek

s m; nð Þzb
0; if Ek

s m; nð Þbb
�

ð13Þ

where β is a positive integer controlling the spatial continuity
of the selected edges. For instance, when β is set to 9 in Fig.
2, only the eight-connected region with the strongest spatial
continuity is labeled out in Bs,intra

k .
Taking both the inter- and intrascale dependencies into

account, the correlation matrix Bs
k is therefore defined as

Bk
s m; nð Þ = 1; if Bk

s;inter m; nð Þ = 1 andBk
s;intra m; nð Þ = 1

0; otherwise

�

ð14Þ



Fig. 1. (A) Original image. (B) Histogram of |Ws+1
k (m,n)/Ws

k(m,n)|.
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Then the correlation matrix B is built by

B = diag vec B1
1;B

2
1;B

3
1;
: : :;Bk − 1

s ;Bk
s


 �� 	� 	
; ð15Þ

where vec(·) is an operator stacking a matrix into a column
vector; diag(·) creates a diagonal matrix with a vector down
the diagonal. Fig. 3 shows an example of Bs

k for a fully
sampled image, where image edges are effectively located in
the guiding matrix.

2.3.3. The proposed algorithm
Once obtaining the estimated lowest threshold θlow and

the correlation matrix B, the proposed ECIA algorithm is
implemented according to the following steps.

Algorithm ECIA

(1) Initialize the maximal outer-loop and inner-loop
iteration times tmaxout, tmaxin; inner-loop iteration
count t=1; outer-loop iteration count tout=1; w1=
[0,0,…,0]T; r=y, ρ(0bρb1); θ1=[θ(1),θ(2),…θ(3L
+1)]; where θ(i) is the maximal amplitude of
different subbands of (FuΨ)Hr and L is the WT
decomposition levels;
Fig. 2. The design of correlation matrix B.
(2) Outer-loop: While θ(1),θ(2),…,θ(3L+1)Nθlow and
toutbtmaxout

(3) estimate θlow according to Eq. (10);
(4) Inner-loop: While tbtmaxin

(5) wt + 1=Shtout wt + 1
c FuΨð ÞHr

� �
;

(6) update B according to Eqs. (11)–(15);
(7) wt+1=Bwt+1;
(8) r=y-FuΨwt+1;
(9) t=t+1;

(10) End While (inner-loop ends);
(11) w1=wt;
(12) t=1;
(13) θt+1=max(ρθt,θlow);
(14) tout=tout+1;
(15) End While (outer-loop ends).

2.3.4. Improvement on the speed of ECIA
Compared with IT-EDTC, two factors will slow down the

ECIA. (a) During lowest threshold estimation, the calcula-
tion of noise variance σ2 requires sorting the coefficients of
undecimated WT. (b) As for Ls

k of large size, searching the
eight-connected nonzero entries is time consuming.

image of Fig. 1


Fig. 3. (A) Original image. (B) The guiding maps for the third scale of à trous WT. The decomposition level is 4.
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In Ref. [31], the noise variance σ2 was only calculated at
the finest wavelet scale. Similarly, we estimate θlow only
from the diagonal subband of the finest scale to reduce the
time for coefficient sorting. On the other hand, we divide
matrix Ls

k into small patches and search the eight-connected
regions in each patch.
3. Simulation results

3.1. Edge recovery

Many sampling patterns are proposed for CS MRI. Non-
Cartesian sampling patterns, such as radial and spiral
sampling patterns, were used for MRI reconstruction in
Refs. [32,33]. However, Cartesian sampling pattern [13] is
the most popular trajectory for k-space data acquisition. In
simulations, variable density Cartesian sampling pattern [13]
with a rate of 0.4 (40% measurements), as shown in Fig. 4A,
is used for k-space sampling. The fully sampled MR images
for simulations are obtained from a 1.5-T GE MRI scanner
with a fast-recovery fast spin-echo T2-weighted sequence, as
shown in Fig. 4B and D (Fig. 4B: TR/TE=4020/103 ms,
24×24 cm field of view, 7 mm slice thickness; Fig. 4D:
TR/TE=4000/102 ms, 24×24 cm field of view, 6 mm slice
thickness). Gaussian white noise with variance of 0.02 is
Fig. 4. (A) Variable density Cartesian sampling pattern with 0.4 sampling rate. (B) and (D) are fully sampled MR images. (C) and (E) are the zero-filling
undersampled MR images of (B) and (D) using the sampling pattern in (A).
added to both the real and imaginary parts of k-space
data, respectively.

The performance of the proposed ECIA is compared with
NLCG, IST, FISTA, and IT-EDTC algorithms. Reconstruc-
tion results by different algorithms are given in Figs. 5 and 6.
À trous WT with spline biorthogonal filters and four
decomposition levels is applied. The decreasing factor for
IT-EDTC and ECIA is ρ=0.5. Fig. 5F–J and Fig. 6F–J
indicate that ECIA has the weakest edge features left in the
difference image. Compared with other algorithms, ECIA
achieves the most precise edge reconstruction.

3.2. Noise suppression

For quantitative comparisons of noise suppressions
between ECIA and other algorithms under different noise
levels, signal-to-noise ratio (SNR) between reconstruc-
tions and fully sampled MR images are computed. SNR
is defined as SNR=10×log10(‖x-x ̄‖2

2/‖x-xrec‖2
2), where x is

the fully sampled MR image, x ̄ is the mean value of
x and xrec is the reconstruction result. The curves of SNR
vs. noise variance are given in Fig. 7 for the same MR
image in Fig. 5. It indicates that ECIA yields an SNR
with 2–6 dB higher than those of NLCG, IST, FISTA
and IT-EDTC.

image of Fig. 3
image of Fig. 4


Fig. 5. (A)–(E) are the reconstructions of Fig. 4B by NLCG, IST, FISTA, IT-EDTC and ECIA, respectively. (F)–(J) are the difference images between fully
sampled MR image and (A)–(E) with the gray scale of [0,50].
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To show the value of θlow under different noise levels, the
curve of θlow vs. noise variance is presented in Fig. 8A. It
indicates that θlow increases with the growth of noise
variance. When heavy noise is added to the k-space, more
WT coefficients are submerged into the noise, in which case
a higher θlow will decrease the introduction of significant
Fig. 6. (A)–(E) are the reconstructions of Fig. 4D by NLCG, IST, FISTA, IT-EDT
sampled MR image and (A)–(E) with the gray scale of [0,50].
noise. To show the accuracy of θlow estimation for noise
suppression, Fig. 8B and C gives the curves of SNR between
the reconstruction results of ECIA and fully sampled MR
image under different θlow. In Fig. 8B and C, Gaussian noise
with variances of 0.02 and 0.05 is added to k-space,
respectively, and we find that the highest SNRs are both
C and ECIA, respectively. (F)–(J) are the difference images between fully

image of Fig. 5
image of Fig. 6


Fig. 7. Curves of SNR vs. noise variance of different algorithms.
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Fig. 8. (A) The curve of estimated lowest threshold vs. noise variance. (B
The curve of SNR vs. lowest threshold; Gaussian noise with variance of 0.02
is added. (C) The curve of SNR vs. lowest threshold; Gaussian noise with
variance of 0.05 is added.
achieved near the corresponding θlow estimated under the
two different noise levels in Fig. 8A.

3.3. Reconstruction time comparison

In this section, we report the results of experiments
aiming at comparing the speed of ECIA with other
algorithms. Fig. 4B and D is used for the experiments. All
the experiments are performed using MATLAB, on a
computer equipped with an Intel 2.4-GHz processor, with
2.0 GB of RAM, and a Windows XP operating system. All
the algorithms are carried out until their SNRs stabilize.
Table 1 gives the average CPU time of five instances for
each experiment.

We can observe that the computations of IT-EDTC and
ECIA are fast, while that of IST takes more time than other
algorithms. Due to the estimation of θlow and to the search
for the eight-connected nonzero entries, the reconstruction
time of ECIA is about 20% more than that of IT-EDTC,
which is acceptable considering the 2- to 3-dB SNR
improvement compared with IT-EDTC in Fig. 7.

3.4. Empirical convergence of the objective function

In Fig. 9, we plot the evolution of objective function in
Eq. (6) vs. outer-loop iteration number. Fig. 4B is used for
the experiment, and the maximal IST inner-loop iteration
number tmaxin is set as 10. As the estimation of lowest
threshold θlow is unknown beforehand, we first run the
algorithm and record the final estimated θlow; the curve is
then obtained with the recorded θlow when we run the
algorithm for the second time. From Fig. 9, we observe that
the objective function decreases and gradually stabilizes
when a threshold is fixed within the inner-loop iterations.
Table 1
Reconstruction time comparison between different algorithms

Algorithms NLCG IST FISTA IT-EDTC ECIA

CPU times (s) Fig. 4B 948 5120 690 334 402
Fig. 4D 894 5085 667 329 403
4. Discussion and conclusions

In this work, we propose an algorithm named ECIA. It
automatically assigns the value of regularization parameter
according to an estimated lowest threshold adaptive to the
)

noise intensity and incorporates a prior matrix based on
edge correlation in the WT domain into the objective
function. Simulations demonstrate that ECIA reconstructs

image of Fig. 7
image of Fig. 8


Fig. 9. The evolution of objective function vs. outer-loop iteration number
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MR images with better noise suppression and edge
recovery compared with NLCG, IST, FISTA and IT-EDTC
algorithms; a 2- to 6-dB improvement on SNR is achieved for
the given MR images.

In addition, CS assumes that the signal of interest is sparse
in a particular transform domain. We only consider the prior
information of edge correlation in the inter- and intrascale for
the WT transform. One possible extension may include
designing models to make use of different prior information
of other popular sparsifying transforms, such as contourlet,
and discrete cosine transforms. In addition, we also expect
our model to be integrated with nonconvex optimization,
e.g., replacing the ℓ1 norm with the ℓp (0bpb1) norm or
smoothed ℓ0 norm.
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