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1 Introduction
Electronic Health Records (EHR) based computational phenotyping utilizes EHR data to extract
latent features/factors which represent clinically relevant phenotypes [4, 5, 2, 3, 1]. These latent
factors can be used in various downstream analytics, such as identifying at-risk patients, improving
prediction of patient morbidity and mortality, or identifying cohorts of patients, medications, di-
agnoses, etc. (each phenotype may represent a cohort). However, the inherent heterogeneity of the
EHR data, usually collected from multiple modalities, such as diagnoses, lab tests, medications, etc.,
poses significant challenges. Tensor factorization has recently emerged as an attractive way of doing
computational phenotyping from such heterogeneous, multimodal EHR data [2, 3]. Here, each di-
mension of the tensor corresponds to a data modality (e.g., diagnose, lab test, medication, etc.) and
each entry within the tensor represents co-occurrences (yes/no or counts). For example, a three-way
tensor constructed from EHR data representing patients×diagnoses×medications co-occurrences.

In this work, we present a Bayesian latent factor modeling based framework for inferring compu-
tational phenotypes from EHR data. In contrast to recent work on tensor factorization for EHR
data [2, 3], our framework is not limited to EHR data represented as a single tensor but can seam-
lessly incorporate a tensor (encoding multiway co-occurrences) as well as additional sources of side-
information specified in form of matrices (encoding pairwise co-occurrences/relationships between
entities within or across modalities), or a vector of outcomes (e.g., denoting patients’ hospital admis-
sions or their medical condition). Notably, the computational cost of inference in our model scales
in the number of nonzeros in the tensor and the associated matrices and outcome vector(s) given as
side-information, which is especially appealing because the these objects tend to be highly sparse
in the context of EHR data. Moreover, our framework is not limited to count-valued data [2, 3] but
can seamlessly handle both count- as well as binary-valued tensor/matrices/vectors. Using a beta-
gamma hierarchical construction for the latent factor weights allows us to infer the number of factors
(i.e., the number of phenotypes), which is not possible with the existing tensor factorization methods
proposed recently for EHR data [2, 3]. Finally, each latent factor along a given tensor dimension
represents a distribution (or “topic”, as in topic models) over the entities along that dimension, which
can be used to rank/cluster the entities within each phenotype, and results in good interpretability.

2 Model
We store the co-occurrences in a tensor Y of size n1 × n2 × · · · × nK , with nk denoting the size of
Y along the kth mode/dimension of the tensor (where different modes may correspond to patients,
diagnoses, medications, lab tests). Due to the space limit, we only describe the case when the only
source of information is the tensor; extensions to the case when side-information and/or labels along
one or more modes may be available in addition to the tensor are straightforward, and we will discuss
these cases briefly towards the end of this section.

We model Y as a sum ofR rank-1 components with a Poisson link function for modeling count data:
Y ∼ Pois(

∑R
r=1 λru

(1)
r �· · ·�u

(K)
r ), where u(k)

r ∼ Dir(a(k), . . . , a(k)), λr ∼ Gamma(gr, pr

1−pr
),

pr ∼ Beta(cε, c(1 − ε)), and � denotes vector outer product. This construction essentially de-
composes Y into a set of K factor matrices, U(1), . . . ,U(K), where U(k) = [u

(k)
1 , . . . ,u

(k)
R ], for

k = {1, . . . ,K}, denotes the nk × R factor matrix associated with mode k. The issue to pre-
specifying the tensor rank, R, is handled via the beta-gamma hierarchical construction for λr, which
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leads to a shrinkage property [7]. With R sufficiently large, the weight of unnecessary rank-1 com-
ponents shrinks towards zero, effectively inferring the appropriate tensor rank.

Side-information and labels, binary observations, and inference: Our model can be generalized
to incorporate side-information or outcomes/labels. For side-information in form of matrices along
one or more modes, the latent factors associated with those tensor modes can be shared between the
tensor and the matrix, whereas outcomes/labels can be modeled using another layer of regression
coefficients associated with the latent factors via a regression latent factor model. Moreover, if the
tensor and/or the side-information consists of binary observations, the Poisson link can be replaced
by a truncated Poisson link [6]. Our model admits full local conjugacy, using ideas from recent work
on Poisson latent factor models [7], which lead to simple inference with excellent computational
scalability. The Poisson and truncated Poisson link functions allow our model to scale in the number
of nonzero entries in the data [6], which makes it particularly attractive for massive but sparse
tensors/matrices/vectors, which are common when working with EHR data. Our inference procedure
also naturally extends to streaming data, which allows us to easily incorporate new entities (e.g., new
patients) for continuously growing EHR databases. We skip the details here due to the lack of space.

3 Experiments
Here we show some preliminary results (not using side-information) with EHR tensor. The data
was extracted from a 5-year EHR data (2007-2011) in the care of Durham County residents within
Duke University Health System [1]. To narrow our analysis, we focused on a cohort of Type-
2 Diabetes Mellitus (T2DM) patients, and identified 16,686 patients in the data. We utilize four
modes of data: patients, self-reported medication usage, laboratory tests, and diagnosis/procedure
codes. The dataset includes 421 medications (active ingredients), 1,207 types of laboratory tests,
11,825 diagnosis/procedure codes.

Table 1 indicates prominent medications, lab tests and diagnoses/procedures associated with dif-
ferent phenotypes. Due to the limited space, we only list three phenotypes and two entities for
medication, lab test and diagnoses/procedure modes. The first phenotype involves gout and chronic
kidney disease, which indicates the association between type II diabetes and kidney damage. High
blood sugar levels cause damage to kidneys, which can result in hyperuricemia, a buildup of uric
acid in the blood that causes gout. The medications associated with this phenotype are allopurinol,
to reduce levels of uric acid in the blood, and ketoprofen, to reduce swelling for arthritic patients.
The second and third phenotypes correspond to hypertension and heart diseases.

Table 1: Prominent medications, lab tests, and diagnosis/procedure in three phenotypes.
Med Test Diagn/Procedure Med Test Diagn/Procedure Med Test Diagn/Procedure

Allopurinol Urea nitrogen Gout Amaryl Glucose Diabetes mellitus AmiodaroneVolumn % O2-arterial Congestive heart failure
Ketoprofen GFR Chronic kidney dise Acarbose Blood Essential hypertension Amlodipine CO2 total-arterial Diagn ultrasound of heart

Since each row of a factor matrix is an embeddings/representation of certain entity in the corre-
sponding mode, it can be used to evaluate the distance between entities of different modes. Table 2
associates particular diagnoses/procedures with the top medications by calculating their cosine dis-
tances. Amlodipine and amiloride are both drugs that help reduce hypertension, which commonly
coexist with diabetes mellitus. Albuterol and zafirlukast are drugs that affect the bronchial smooth
muscle to help with lung obstructions. Thus, they are the most commonly associated with asthma.
Allopurinol is used to treat excess uric acid in the blood, which is a main cause of gout and kidney
disease. Ketoprofen is an anti-inflammatory drug, and one of the conditions it helps treat is gout.

Table 2: Top medications associated with different diagnoses/procedures.
Diagn/Procedure Diabetes Mellitus Asthma Gout

Med amlodipine albuterol allopurinol
amiloride zafirlukast ketoprofen

Similarly, diagnoses/procedures can also be associated with lab tests using cosine similarities, as
shown in Table 3. From the table, we find that glucose test is the most associated with diabetes
mellitus, hypertension, and hyperlipidemia. PH arterial blood OR is shown to be connected to cv
and arterial catheter, particularly in patients with severe cardiac conditions.

Table 3: Top diagnoses/procedures associated with different lab tests.
Test Glucose PH-arterial blood OR SPE alpha 2
Diagn/Proc diabetes mellitus insert non-tunnel cv cath monoclonal gammopathy

essential hypertension art cath bld smear peripheral interp
hyperlipidemia doppler color flow vel mapping immunoglob typ, ea
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