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Abstract

We present a new framework for topic modeling that allows leveraging hierar-
chical side-information associated with the documents, specified as a multi-level
taxonomy or ontology structure. For example, a scholarly document with a two-
level side-information will have its authors’ identities in the first level and, and the
author affiliations in the second level. Our framework is based on non-negative
matrix factorization of count data (e.g., word counts) and learns embeddings of
the entities present at each level in the data/side-information hierarchy (e.g., doc-
uments, authors, affiliations, in the previous example), with appropriate transfer
of information across levels. Although here we consider document modeling, the
framework can be readily applied to the more general problem of non-negative
matrix factorization of count-valued matrices with hierarchical side-information.
The framework also enjoys full local conjugacy, facilitating efficient Gibbs sam-
pling for model inference. Inference scales in the number of non-zero entries in
data matrix, which is especially appealing for massive but sparse matrices. We
demonstrate the effectiveness of this framework on several real-world datasets.

1 Introduction

Topic models [1, 9] provide a useful way for uncovering topics or thematic structures in documents.
In some cases, the documents may be associated with meta-data or labels (supervision) that can be
leveraged for improved topic modeling[7, 5]. Most of the exising methods of this type, however,
do not assume/exploit structural forms of supervision, e.g., a taxonomy of labels/categories for the
documents, or other natural types of multi-level supervision, such as document authors and their
corresponding affiliations. See Fig. 1 for some examples where the the data is naturally represented
as a matrix of word counts for each document, with associated side-information. Although data ex-
hibiting such structure are prevalent in many applications, existing methods cannot properly leverage
such forms of side-information arranged in form of multiple layers. This problem setting naturally
calls for effective and efficient transfer learning across the multiple layers of supervision.

Figure 1: Two examples of the type of side-information that our proposed framework can leverage, Left: Side-information specified in
form of a multi-layer hierarchy with bipartite connections between nodes in adjacent layers. Right: Side-information specified in form of an
ontology over known labels.

We present a generative Bayesian framework that allows us to leverage such structural (e.g., speci-
fied hierarchically or via a taxonomy) side-information in the context of non-negative matrix factor-
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ization of count data, by transferring information across the multiple levels of hierarchy of taxonomy
associated with the data. In addition to being useful for standard tasks such as matrix completion
for count data, our framework can also be used for topic modeling, while leveraging the available
side-information. Another appealing aspect of our framework is that, in addition to learning the
embeddings for the rows and columns of the data matrix, it can also learn embeddings of the nodes
that constitute the side-information; e.g., for the two examples shown in Fig. 1, our model can learn
the embeddings of documents and words, as well as can learn the embeddings for the entities that
constitute the side-information - authors and affiliations in Fig 1 (left) and each of the nodes in the
label taxonomy in Fig 1 (right). These interpretable embeddings can be useful in other tasks, such as
clustering and classification, or for topic modeling at multiple resolutions (e.g., in Fig 1-left, topics
can be naturally associated to authors and affiliations). This significantly enhances the versatility
and usefulness of our framework to applications beyond matrix factorization and completion. Our
framework also enjoys full local conjugacy which facilitates closed-form Gibbs sampling for all
model parameters. Moreover, inference in our model scales in the number of nonzeros in the data
matrix, which makes it scale easily to massive but sparse matrices.

2 THE MODEL
Here, we will present the model description assuming that the side-information is given as a hi-
erarchy or ontology with two levels; the model can be easily implemented using Gibbs sampling
and modified to work with arbitrary number of levels. Here we assume that we are given a data
matrix X of size M × N , where each column of X represents a document. The side-information
for documents is provided in form of a multi-level structures, such as a hierarchy (Fig. 1-left) or an
ontology (Fig. 1-right). In the absence of any side-information, the counts matrix X ∈ ZM×N can
be modeled using a Poisson Factor Analysis (PFA) model as X ∼ Pois(UV>) where U and V are
non-negative matrices of size M × R and N × R, respectively. This is equivalent to assuming that
each count-valued observation xmn is a sum of R latent counts [2, 9, 3]. Therefore, we have

xmn =

R∑
r=1

xmnr, xmnr ∼ Pois(umrvnr) (1)

vnr ∼ Ga(gr, qr/(1− qr)), qr ∼ Beta(cε, c(1− ε)) (2)
u:r ∼ Dir(α, . . . , α), gr ∼ Ga(c0g0, 1/h0) (3)

Note that each Dirichlet drawn column u:r of U represents a “topic”. Also note the Poisson-gamma
construction (Eq. 1–2) is equivalent to a gamma-negative binomial model [9].

2.1 Leveraging Multi-Level Side-Information

We would like to leverage the multi-level side-information available for the columns of X (as shown
in Fig. 1). To accomplish this, we augment the PFA generative model using a multi-level condition-
ing structure imposed on the N × R factor score matrix V, whose each row vn = [vn1, . . . , vnR]
denotes the factor scores (or embedding) of a level-zero object n. In particular, to leverage the side-
information (i.e., from level-one and above), we first model the rth factor score of object n as a sum
of contributions from each of the level-one nodes associated with this object

vnr =
∑

l∈L(1)
n

vnrl, vnrl ∼ Ga(glr, qr/(1− qr)) (4)

where L(1) denotes the set of all nodes in level-one and L(1)
n denotes the subset of these nodes

associated with object n from level-zero. Using gamma-additivity, Eq. 4 can be combined as

vnr ∼ Ga(
∑

l∈L(1)
n

glr, qr/(1− qr)) (5)

In Eq. 5, glr denotes the rth factor score of node l at level-one (first level of side-information).

To leverage the level-two side-information, we likewise assume that the factor scores of this level-
one node l is written as a sum of contributions from each of the level-two nodes it is associated with:

glr =
∑

p∈L(2)
l

glrp, glrp ∼ Ga(hpr, 1/β0), hpr ∼ Ga(s, 1/β1) (6)
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where L(2) denotes the set of all nodes in level-two of the side-information hierarchy and L(2)
l

denotes the subset of these nodes associated with node l in level-one. Note that Eq. 6 can also be
combined as glr ∼ Ga(

∑
p∈L(2)

l

hpr, 1/β0), where hpr denotes the rth factor score of node p at
level-two (second level of side-information). Subsequently, we will refer to our model as PFA-SSI,
as an abbreviation for Poisson Factor Analysis with Structural Side-Information.

2.2 Learning Multi-Level Embeddings
Our generative model provides a natural and effective way of learning embeddings of the objects
being modeled (e.g., the documents) as well as the embeddings of the nodes that together constitute
the multi-level side-information (e.g., the authors and affiliations or the label ontology as shown in
Fig. 1). To see this, note that vn = [vn1, . . . , vnR], gl = [gl1, . . . , glR], , and hp = [hp1, . . . , hpR]
can be interpreted as embeddings of the nth level-zero object, and the lth level-one node and the pth
level-two node in the multi-level side-information, respectively. Note that all these embeddings are
in the same R-dimensional space and hence are “comparable”. Since in our model the embeddings
correspond to topics, the embeddings allow us to discover the topics associated with each object as
well as the topics associated with each constituent node of the side-information. For example, if
the side-information is given in form of a label ontology then our model can infer the embedding
of each label in the ontology and the topics associated with each label. Such a property makes our
framework readily applicable for tasks such as: (1) supervised topic modeling [6, 4] with multi-
level supervision, which most of existing methods are unable to leverage in a proper way; and (2)
assigning labels to unlabeled (i.e., test) objects by inferring the embeddings of these objects, using
the dictionary U learned from the labeled training data, applying a standard PFA with dictionary
fixed as U, and finding the most similar labels by comparing these inferred embeddings with the
embeddings of the set of labels in the training data.

3 EXPERIMENTS
We evaluate our model, both quantitatively (in its ability to predict missing data in the matrix X)
and quatitatively (interpretability of the topics and embeddings learned by the model), by perform-
ing experiments on three real-world data sets described below:
20 Newsgroup: This data consists of 18,774 documents (vocabulary size 5638) organized into 20
groups where each of the groups can be further classified into a super-group (there are a total of
seven super-groups). Thus the side-information can be thought of as a two-level taxonomy.
State of the Union: This dataset includes 225 state of the union messages (vocabulary size 7518)
delivered annually by 41 presidents of the US from 1790 to 2014 [8]. Party affiliation information
for each president is also available (Independent, Federalist, Democratic-Republican, Democrat,
Whig, and Republican). Thus the side-information can be thought of as a two-level taxonomy.
NIPS: 2484 articles (vocabulary size 14036) of the NIPS conferences from 1988 to 2003. The cor-
pus consists of 2865 authors. For this data, the side-information only consists of one level (author).

Table 1: Loglikelihood comparison between PFA and PFA-SSI.
Methods STOU 20 Newsgroup NIPS
PFA [9] -23232 -522876 -345853
PFA-SSI -22168 -397969 -293404

3.1 Predicting Held-out Data
We evaluate our model on predicting missing data in X by holding out 10% of the observations and
predicting them via our approach, using the remaining 90% data as training data. We compare our
model with Poisson Factor Analysis (PFA) [9], which is a state-of-the-art non-negative matrix fac-
torization method and also subsumes many other discrete factorization methods (including gamma-
Poisson count matrix factorization, LDA, etc.) as special cases. Table 1 shows the log-likelihood
for the held-out data. As is shown, our model significantly outperforms PFA on all datasets, which
shows our model’s ability in leveraging structural side-information in an effective way.

Table 2: Most prominent topic for five groups (left) and five super-groups (right) in 20 newsgroup
atheism graphics mac.hardware forsale autos religion auto sport sci politics
religion image windows sale car god bike game space gun

real graphics drive offer bike bible dod hockey launch government
god bit mac st cars jesus ca period satellite crime

book data card shipping oil christian back april satellites control
true computer mb condition dod christians car espn technology firearms

question software system price ca christ bmw play commercial news
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(a) (b) (c) (d)
Figure 2: 20 newsgroups and STOU data. Inferred group-group (a) and president-president (b) similarities at level-one. Inferred group-
supergroup (b) and president-party (d) similarities between the level-one and the level-two nodes. The numbers in (a) (b) are indices for
groups, and numbers with same color indicate that the corresponding groups are associated with the same supergroup. The indices for groups
are as follows. 1: alt.atheism; 2: comp.graphics; 3: comp.os.ms-windows.misc; 4: comp.sys.ibm.pc.hardware; 5: comp.sys.mac.hardware;
6: comp.windows.x; 7: misc.forsale; 8: rec.autos; 9: rec.motorcycles; 10: rec.sport.baseball; 11: rec.sport.hockey; 12: sci.crypt; 13:
sci.electronics; 14: sci.med; 15: sci.space; 16: soc.religion.christian; 17: talk.politics.guns; 18: talk.politics.mideast; 19: talk.politics.misc; 20:
talk.religion.misc.The numbers before each president in (c) are labels for parties. 1: Independent; 2: Federalist; 3: Democratic-Republican; 4:
Democrat; 5: Whig; 6: Republican. In the legend, the names of all presidents from the same party are shown in the same color.

Table 3: Two most prominent topics (for time-period of 1988-2003) for five authors in NIPS data
Alex Smola Zoubin Ghahramani Geoff Hinton Michael Jordan Peter Bartlett

functions data variables gaussian units objects probability space theorem tree
linear basis em mixture hidden experts parameters local bound data
kernel set models components weights view likelihood dimensional case training

support functions field data hinton hierarchical bayesian cluster proof decision
set radial monte carlo independentinformation recognition prior structure dimension test

vector gaussian networks density inputs parts distribution nearest upper trees
space training inference covariance net gating estimation points class machine

3.2 Qualitative Analyses

We also perform qualitative analyses of our results using the topics and the embeddings learned by
our model.

20 Newsgroup Data: For this data, Table 2 shows the most prominent topic associated with five
groups of the level-one (groups) and level-two (supergroups) side-information. Note that our model
learns embeddings of each of these groups and the non-negative embeddings of each group can
be used to identify the most active topic associated with that group. As shown in the table, the
topics inferred are closely related to the corresponding groups/super-groups. Using the inferred
group/super-group embeddings, we also compute cosine similarities between groups and between
groups and supergroups. Fig. 2(a)(b) shows the plots of the estimated similarities. As the plots
show, similarities between groups that belong to the same super-group are high, as reflected by the
block-diagonal pattern in Fig. 2 (a). Likewise, each group has a higher inferred similarity with its
own super-group as compared to other super-groups, as shown in in Fig. 2 (b). These results show
that the embeddings learned by our model are meaningful and consistent with the ground-truth.

State of the Union Data: For the State of the Union data, we use the inferred embeddings of
presidents and parties to compute president-president similarity and president-party similarity. The
resulting plots are shown in Fig. 2(c)(d). It is interesting to note that the president-president inferred
similarity plot shows a block-diagonal structure (for better visualization, the president indices are
ordered based on the party indices), with presidents from the same party inferred to be highly similar
with each-other. This suggests that the side-information from level-two nodes (parties) is effectively
transferred to level-one nodes (presidents).

NIPS Data: We next look at the topics inferred from the NIPS data. Using the inferred embeddings
for each author, we rank the most prominent topics for each author (based on the embedding scores).
Table 3 shows two most active topics for each of five of the authors in NIPS data. As Table 3 shows,
the inferred most prominent topics for each of these authors are consistent with what these authors
were best known for the time-period (1988-2003) covered by this data collection.

4 CONCLUSION
We have presented a probabilistic framework for incorporating structural side-information in non-
negative matrix factorization for count-valued data (e.g., a matrix of word counts for a collection
of text documents, such as scholarly publications). Our fully Bayesian framework is conceptually
simple, computationally scalable, and leads to improved performance on predicting held-out data.
The topics and the embeddings learned by our model can be useful for various other downstream
tasks (e.g., classification) or for qualitative analyses.
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